Extended weighted linear prediction using the autocorrelation snapshot - a robust speech analysis method and its application to recognition of vocal emotions
نویسندگان
چکیده
Temporally weighted linear predictive methods have recently been successfully used for robust feature extraction in speech and speaker recognition. This paper introduces their general formulation, where various efficient temporal weighting functions can be included in the optimization of the all-pole coefficients of a linear predictive model. Temporal weighting is imposed by multiplying elements of instantaneous autocorrelation “snapshot” matrices computed from speech data. With this novel autocorrelation-snapshot formulation of weighted linear prediction, it is demonstrated that different temporal aspects of speech can be emphasized in order to enhance robustness of feature extraction in speech emotion recognition.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملThe Effects of Culture and Gender on the Recognition of Emotional Speech: Evidence from Persian Speakers Living in a Collectivist Society
This paper reports on a behavioral study that explores the role of culture and gender in the recognition of emotional speech in an under investigated cultural context (a collectivist society: i.e., Iran). Participants were asked to recognize the emotional prosody of a set of validated emotional vocal portrayals (including the five basic emotions). Findings of the experiment were then comp...
متن کاملLinear Prediction Using Refined Autocorrelation Function
This paper proposes a new technique for improving the performance of linear prediction analysis by utilizing a refined version of the autocorrelation function. Problems in analyzing voiced speech using linear prediction occur often due to the harmonic structure of the excitation source, which causes the autocorrelation function to be an aliased version of that of the vocal tract impulse respons...
متن کاملCyclic autocorrelation-based linear prediction analysis of speech
In this paper, a new approach for linear prediction (LP) analysis is proposed. This approach makes the assumption that the speech signal is cyclostationary and uses cyclic autocorrelation function for computing LP parameters. Since the cyclic autocorrelation function of a stationary random signal is zero, independent of its statistical description, this analysis is robust to additive noise, whi...
متن کاملDesign of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter
This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...
متن کامل